
Research Report

LLM-based Knowledge Agents

Banghao Chi1

1University of Illinois at Urbana-Champaign, NCSA, Urbana, US
banghao2@illinois.edu

May 22, 2025

Keywords: Natural Language Processing (NLP); Knowledge Representation; Large Language
Models (LLMs)

1 Introduction

The exponential growth of information available on the internet has created both unprecedented
opportunities and significant challenges in knowledge management and utilization. While the web
contains vast amounts of valuable data, much of it exists in unstructured formats and are scattered
everywhere, making it difficult to efficiently process, analyze, and leverage at scale. Traditional
web scraping and data extraction techniques often struggle with the complexity and diversity of
web content, leading to incomplete or inaccurate information retrieval.

Recent advancements in Large Language Models (LLMs) have opened new possibilities in nat-
ural language processing and understanding. These models have demonstrated remarkable capa-
bilities in tasks such as text summarization, information extraction, and question answering(Zhu
et al., 2023). However, their full potential in systematically processing and structuring web-based
information remains to be explored.

Structured outputs of LLMs is another critical consideration in developing effective knowledge
extraction systems. By constraining LLMs to generate structured outputs, such as well-formed
JSON or XML, the extraction process becomes more efficient and effective in terms of consistency,
reliability, and downstream processability. As a result, guided generation techniques using Fi-
nite State Machine(FSM) can effectively constrain LLM outputs while maintaining their semantic
understanding capabilities(Willard and Louf, 2023).

Problem setting: In our case, we want to extract the information of an entity(with desired
properties) with a search query or specific URL(s) as an entry point and diverge from that with
the power of LLMs. That is:

• Input: one single URL(or multiple, or just a single search query) as the starting point of
the entity’s information

• Output: a JSON object that contains the information of the entity with designated prop-
erties and corresponding values

2 Methodology

The system leverages Large Language Models (LLMs) and structured outputs to create a robust
pipeline for entity information extraction. This approach combines web scraping, schema detection,
recursive link analysis, and intelligent information gathering to build comprehensive entity profiles.

2.1 Algorithm Overview

The core algorithm can be described in the following pseudocode:

1



Algorithm 1: Enhanced Entity Information Extraction Pipeline

Input: Input query or URL(s), maximum recursion depth
Output: JSON files containing comprehensive entity information

// Phase 1: Process input and initialize logging

1 if IsQuery(input) then
2 urls← BraveSearch(input)
3 end
4 else
5 urls← ProcessInputURLs(input)
6 end
7 logger ← SetupLogging(model,maxDepth)

// Phase 2: Process each URL for entity information

8 foreach url ∈ urls do
9 startT ime← CurrentTime()

10 scrapeResult←WebScraper.Scrape(url)
// Schema Detection and Management

11 schemaResult← Agent.DetectSchema(scrapeResult)
12 if schemaResult = ”No match” then
13 schemaType← UserInput()
14 newSchema← Agent.GenerateNewSchema(scrapeResult, schemaType)
15 SchemaManager.SaveNewSchema(schemaType, newSchema)

16 end
// Initial Entity Data Extraction

17 entityData← Agent.ExtractEntityData(scrapeResult, schemaType)
18 noneKeys← GetNoneValueKeys(entityData)

19 end

// Phase 3: Recursive Link Analysis

20 if noneKeys ̸= ∅ then
21 (discoveredLinks, relevanceDict)← GatherLinksRecursively(
22 scrapeResult, entityData, noneKeys, schemaType,maxDepth)

23 end

// Phase 4: Information Enhancement

24 foreach (linkUrl, fields) ∈ relevanceDict do
25 linkContent←WebScraper.Scrape(linkUrl)
26 entityData← Agent.UpdateEntityData(entityData, linkContent, fields)

27 end

// Phase 5: Results Storage

28 outputPath← GenerateOutputPath(entityData, schemaType)
29 SaveToJSON(entityData, outputPath)
30 processingT ime← CurrentTime()− startT ime
31 CollectMetrics(url, processingT ime, relevanceDict)
32 WriteProcessStats(urls, processingT imes, relevanceDict)

33 return entityData

2.2 Algorithm Breakdown

The enhanced algorithm operates in six distinct phases:

• Phase 1: Input Processing and Initial Setup

– Processes input which can be either a search query or URL(s)

– Performs Brave search if input is a query

– Sets up comprehensive logging system for process tracking

• Phase 2: Entity Processing

2



– Scrapes webpage content while excluding irrelevant elements

– Detects appropriate schema for the entity

– Generates new schema if no matching schema exists

– Extracts initial entity information using LLM

• Phase 3: Recursive Link Analysis

– Identifies fields with missing information

– Recursively discovers and analyzes relevant links

– Evaluates link relevance for specific missing fields

– Maintains visited URL tracking to prevent cycles

• Phase 4: Information Enhancement

– Processes each relevant link to extract additional information

– Updates entity data with new information from each source

• Phase 5: Results Storage

– Saves comprehensive entity information to JSON files

– Generates detailed CSV reports of process statistics

The algorithm uses a modular approach that separates concerns between web scraping, schema
management, information extraction, and data storage. Next, we will dive into howGatherLinksRecursively
this function works.

2.3 GatherLinksRecursively

This algorithm implements intelligent recursive link discovery and analysis for missing entity in-
formation:

3



Algorithm 2: Intelligent Recursive Link Discovery and Analysis

Input: Initial webpage content, entity JSON data, empty field keys, schema type,
maximum depth

Output: Set of relevant links, dictionary mapping URLs to relevant fields

// Base case - check recursion depth

1 if maxDepth ≤ 0 then
2 return ∅, ∅
3 end

// Initialize tracking sets and dictionaries

4 visitedUrls← ∅
5 relevantLinks← ∅
6 relevanceDict← {}
// Extract links from current page

7 pageLinks← Agent.ExtractLinks(content, entityData)
8 validLinks← FilterValidLinks(pageLinks)

// Process each discovered link

9 foreach link ∈ validLinks do
10 if link.url ∈ visitedUrls then

11 end
12 if IsPDF(link.url) ∨ IsArxiv(link.url) then

13 end
14 visitedUrls← visitedUrls ∪ {link.url}
15 relevantF ields← ∅

// Check relevance for each empty field

16 foreach field ∈ emptyF ields do
17 relevance← Agent.CheckLinkRelevance(link, field, entityData)
18 if relevance.answer = ”Yes” then
19 relevantF ields← relevantF ields ∪ {field}
20 end

21 end

// Process relevant links recursively

22 if relevantF ields ̸= ∅ then
23 relevantLinks← relevantLinks ∪ {link}
24 relevanceDict[link.url]← relevantF ields

// Scrape and recurse on relevant link

25 newContent←WebScraper.Scrape(link.url)
26 if newContent ̸= null then
27 (nestedLinks, nestedRelevance)← GatherLinksRecursively(
28 newContent, entityData, emptyF ields, schemaType,maxDepth− 1)
29 relevantLinks← relevantLinks ∪ nestedLinks
30 relevanceDict← relevanceDict ∪ nestedRelevance

31 end

32 end

33 end

34 return (relevantLinks, relevanceDict)

2.4 Algorithm Breakdown

The GatherLinksRecursively algorithm operates in several key phases:

• Initialization

– Sets up tracking for visited URLs to prevent cycles

– Initializes collections for relevant links and their mappings

– Validates depth parameter to enforce recursion limits

• Link Discovery

4



– Extracts all links from current webpage content

– Filters links for validity and accessibility

– Removes PDFs and certain blocked domains (e.g., arXiv)

• Relevance Analysis

– Uses Agent.CheckLinkRelevance to analyzes each link for relevance to missing fields

• Intelligent Recursive Processing

– Processes relevant links by scraping their content

– Recursively discovers nested links within depth limit and wisdom

• Result Aggregation

– Combines relevant links from all depth levels

– Merges relevance dictionaries maintaining field associations

Next, we will explore how all the agents algorithms work.

2.5 Agent Methods

The Agent class implements several key methods for entity processing and information extraction:

2.5.1 Agent.DetectSchema

This method analyzes webpage content to determine the appropriate schema type:

Algorithm 3: Schema Detection

Input: Webpage content as text
Output: Schema type and detection reason

// Initialize schema detection

1 availableSchemas← SchemaManager.GetSchemaNames()
2 response← ∅
// Prepare LLM prompt for schema detection

3 systemPrompt← CreateSystemPrompt(availableSchemas)
4 userPrompt← CreateUserPrompt(webpageContent)

// Query LLM for schema detection

5 response← QueryLLM(systemPrompt, userPrompt)

// Validate and return result

6 if response.schema /∈ availableSchemas ∧ response.schema ̸= ”No match” then
7 return ”No match”, ”Invalid schema detected”
8 end
9 return response.schema, response.reason

2.5.2 Agent.GenerateNewSchema

This method creates a new Pydantic schema when no existing schema matches:

5



Algorithm 4: Dynamic Schema Generation

Input: Webpage content, desired schema type
Output: New Pydantic schema code

// Load example schema template

1 exampleSchema← LoadExampleSchema()

// Prepare LLM prompt for schema generation

2 systemPrompt← CreateSchemaGenerationPrompt(exampleSchema)
3 userPrompt← CreateUserPrompt(content, schemaType)

// Generate new schema

4 schemaCode← QueryLLM(systemPrompt, userPrompt)

// Validate generated schema

5 if !IsValidPydanticSchema(schemaCode) then
6 return Error(”Invalid schema generated”)
7 end
8 return schemaCode

2.5.3 Agent.ExtractEntityData

This method extracts entity information using the appropriate schema:

Algorithm 5: Entity Data Extraction

Input: Webpage content, schema type
Output: Structured entity data

// Get schema definition

1 entitySchema← SchemaManager.GetSchema(schemaType)

// Prepare LLM prompt for data extraction

2 systemPrompt← CreateExtractionPrompt(schemaType, entitySchema)
3 userPrompt← CreateUserPrompt(webpageContent)

// Extract entity data

4 response← QueryLLM(systemPrompt, userPrompt)

// Validate extracted data against schema

5 if !ValidateAgainstSchema(response, entitySchema) then
6 return Error(”Invalid data structure”)
7 end
8 return response

2.5.4 Agent.CheckLinkRelevance

This method evaluates if a link might contain information about a specific entity field:

6



Algorithm 6: Link Relevance Evaluation

Input: URL, display text, target field, entity data, schema type
Output: Relevance assessment with reason

// Initialize relevance assessment

1 entityName← GetEntityName(entityData)
2 systemPrompt← CreateRelevancePrompt(schemaType)

// Prepare link context

3 linkContext← {
4 url : url,
5 displayText : displayText,
6 targetF ield : targetF ield,
7 entityName : entityName
8 }
// Query LLM for relevance assessment

9 response← QueryLLM(systemPrompt, linkContext)

// Validate response structure

10 if !IsValidResponse(response) then
11 return Error(”Invalid response structure”)
12 end

// Return structured assessment

13 assessment← {
14 answer : response.answer,
15 reason : response.reason
16 }
17 return assessment

2.5.5 Agent.UpdateEntityData

This method updates entity information with data from additional sources:

Algorithm 7: Entity Data Update

Input: Original entity data, new content, target fields
Output: Updated entity data

// Prepare update prompt

1 systemPrompt← CreateUpdatePrompt(schema, targetF ields)
2 userPrompt← CreateUserPrompt(originalData, newContent)

// Update entity data

3 updatedData← QueryLLM(systemPrompt, userPrompt)

// Merge and validate updates

4 foreach field ∈ targetF ields do
5 if HasNewInformation(updatedData, field) then
6 originalData[field]← MergeInformation(originalData[field], updatedData[field])
7 end

8 end

// Validate final structure

9 if !ValidateAgainstSchema(originalData, schema) then
10 return Error(”Invalid update structure”)
11 end
12 return originalData

2.6 Implementation Details

The Agent methods share several key characteristics:

• Uses a consistent interface for LLM queries

• Temperature control (0.0) for deterministic outputs

7



• Guided JSON schemas for structured responses

3 Results

Given the novel nature of our LLM-based entity information extraction topic, there are no direct
state-of-the-art frameworks available for comparative evaluation. Traditional information extrac-
tion systems typically focus on specific domains or predefined schemas, while our approach offers
flexible, schema-driven extraction across diverse entity types. Therefore, we present comprehensive
results across multiple dimensions to demonstrate the effectiveness of our system.

3.1 FSM and LLM Integration Performance

To evaluate the fundamental effectiveness of integrating Finite State Machines (FSM) with Large
Language Models, we conducted a comparative analysis between our FSM-guided extraction ap-
proach and GPT-4o mini’s baseline performance. This comparison focuses on one-time information
extraction accuracy, testing both semantic understanding and structured information extraction
capabilities.

Table I: FSM-LLM Integration Performance Results on Car

Models JSON Key Value Numeric String
Validity Similarity Exactness Similarity Similarity

1.000 1.000 0.969 0.980 0.910
Qwen2.5-72B Standard Deviation

0.000 0.000 0.000 0.044 0.064

1.000 1.000 0.972 0.989 0.930
GPT-4o-mini Standard Deviation

0.000 0.000 0.005 0.035 0.052

The FSM-LLM integration performance was evaluated across five key metrics using 30 distinct
samples of entity schema Car, Professor, and Movie. For each model (Qwen2.5-72B and GPT-4o-
mini), we report both the mean performance and standard deviation to capture result consistency
and reliability. Here, we report the results on Car entity as an example. As seen in Table I, both
models achieved perfect scores in JSON validity and key similarity (1.000), demonstrating robust
structured outputs capability. For value exactness, GPT-4o-mini showed a slightly higher average
(0.972) compared to Qwen2.5-72B (0.969), though the difference is minimal. In numeric similarity,
GPT-4o-mini outperformed with 0.989 versus 0.980, showing better handling of numerical data.
String similarity results favored GPT-4o-mini (0.930) over Qwen2.5-72B (0.910), indicating slight
superior text matching capabilities. The standard deviations reveal that both models maintain
consistent performance across samples, with numeric and string similarities showing the most
variation (standard deviations ranging from 0.035 to 0.064), while maintaining perfect stability in
JSON validity and key similarity metrics.

As a result, the difference is model-specific, with our focus being on JSON validity and value
exactness. For more results on other schemas such as Professor and Movie, checkout the Github
repository.

3.2 Web Scraping Performance

The effectiveness of our information extraction pipeline also slightly depends on the quality of the
initial web scraping. Our custom web scraper was evaluated across various website structures and
content types as compared to Firecrawl , an open-source project which turns websites into LLM-
ready data. The results can be found in the Github repository. By measuring and validating the
content of the results, we have successfully achieved 100% accuracy as for the scraping performance.

3.3 Final Results

We conducted evaluation of our FSM-guided LLM extraction system across multiple entity schemas
and models. The evaluation encompassed 15 samples across five distinct entity types: research
papers, courses, students, language models, and professors. Two state-of-the-art quantized models
were compared: Qwen2.5-72B-Instruct-AWQ and Meta-Llama-3.3-70B-Instruct-AWQ-INT4. Be-
low is the table demonstrating averaged results. For more information, please checkout this file.

8

https://github.com/Forward-UIUC-2024F/banghao-chi-knowledge-agent/tree/master/results
https://github.com/mendableai/firecrawl
https://github.com/Forward-UIUC-2024F/banghao-chi-knowledge-agent/tree/master/results/scrape
https://github.com/Forward-UIUC-2024F/banghao-chi-knowledge-agent/blob/master/results/comprehensive_evaluation_results.csv


Table II: Comprehensive Evaluation Results Across All Schemas

Models JSON Key Value Numeric String
Validity Similarity Exactness Similarity Similarity

1.000 1.000 0.911 0.934 0.966
Qwen2.5-72B Standard Deviation

0.000 0.000 0.057 0.064 0.032

1.000 1.000 0.872 0.903 0.782
Meta-Llama-3.3-70B Standard Deviation

0.000 0.000 0.061 0.089 0.087

3.3.1 Overall Performance

Both models demonstrated excellent performance in structural accuracy, achieving perfect scores
(1.000) in key similarity across all schemas, indicating robust adherence to the prescribed JSON
structure. The Qwen2.5-72B model consistently outperformed Meta-Llama-3.3-70B across all ma-
jor metrics.

3.3.2 Key Findings

• Numerical Similarity: The difference of the numerical value is mainly due to year(the
model made it up), unit transformation(e.g., training tokens in billion, but the model reports
raw number such as 72700000000 instead of 72).

• Number of Depths: The results of depths of one are generally better than that of two,
indicating the potential best number of depths.

• Model Comparison: Qwen2.5-72B-Instruct-AWQ demonstrated superior performance across
all metrics, with particularly notable advantages in string similarity (18.4% higher) and value
exactness (4.5% higher) compared to Meta-Llama-3.3-70B.

These results demonstrate the robustness of our FSM-guided extraction system across diverse
entity types and its ability to maintain high accuracy while processing various information types.
The consistent superior performance of Qwen2.5-72B-Instruct-AWQ suggests it as the preferred
model for deployment scenarios requiring high accuracy in information extraction tasks.

4 Assessment

Our semester goals focused on developing a robust, LLM-based system for automated entity in-
formation extraction with adaptive schema management. Assessing our progress against these
objectives reveals several key achievements and areas for future development:

4.1 Core Objectives Achievement

• Automated Information Extraction

– Successfully implemented a fully automated pipeline integrating FSM with LLMs

– Achieved high accuracy in information extraction (96.9-97.2% value exactness)

– Demonstrated good final results across all tests

• Intelligent Recursive Information Discovery

– Implemented depth-controlled and intelligent link discovery and relevance assessment

– Successfully merged information from multiple sources maintaining data integrity

• Schema Flexibility

– Developed dynamic schema detection and generation capabilities

9



4.2 Technical Milestones

• Model Integration

– Successfully integrated and compared multiple LLM models, featuring open-source mod-
els such as Qwen2.5-72B, Llama-3.3-70B and Mistral-Large(all AWQ-quantized)

– Demonstrated competitive performance between Qwen2.5-72B and GPT-4o-mini

5 Reflection

5.1 Research Incentives

Learnt the core of concept of research, which is to research things driven by peronal interests and
rational thinking

5.2 Technical Skills

• Gained deep understanding of LLM decoding operations and evaluation

• Enhanced database management and Docker containerization skills

5.3 Feedback for Collaboration

5.3.1 Strengths

• Strong advisory support from Dr. Kevin Chang

• Access to excellent research infrastructure through NCSA

• Clear project milestones and progression

5.3.2 Areas for Enhancement

• More incentives and commmitment to the project during semester

6 Future Work

Several key areas have been identified for future development.

6.1 Framework Extensions

□ Explore more intelligent ways of:

□ Scraping relevant links

□ Utilize more of the search engine?

□ Utilize browser-use-webui for browser control?

□ Updating the JSON object

□ Update field by field instead of the entire JSON object?

⊠ Dynamic schema creation

⊠ Bypass anti-scraping by rendering pages in the local browser

□ Information effectiveness evaluation

□ Database operation

□ Modularize the codebase

10

https://github.com/warmshao/browser-use-webui


References

Willard, Brandon T and Louf, Rémi (2023). “Efficient guided generation for large language mod-
els”, arXiv preprint arXiv:2307.09702,

Zhu, Yutao et al., (2023). “Large language models for information retrieval: A survey”, arXiv
preprint arXiv:2308.07107,

11


	Introduction
	Methodology
	Algorithm Overview
	Algorithm Breakdown
	GatherLinksRecursively
	Algorithm Breakdown
	Agent Methods
	Agent.DetectSchema
	Agent.GenerateNewSchema
	Agent.ExtractEntityData
	Agent.CheckLinkRelevance
	Agent.UpdateEntityData

	Implementation Details

	Results
	FSM and LLM Integration Performance
	Web Scraping Performance
	Final Results
	Overall Performance
	Key Findings


	Assessment
	Core Objectives Achievement
	Technical Milestones

	Reflection
	Research Incentives
	Technical Skills
	Feedback for Collaboration
	Strengths
	Areas for Enhancement


	Future Work
	Framework Extensions


