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Abstract

3D object detection with point clouds is crucial for appli-001
cations in autonomous driving, robotics, and augmented re-002
ality. As these applications advance towards real-time pro-003
cessing on edge devices, they demand models that enable004
efficient and flexible inference. While recent post-training005
quantization methods address some of these challenges by006
reducing model size and computational load without re-007
training, they are limited by calibration data biases and008
suffer from sub-optimal accuracy without precise calibra-009
tion. Moreover, existing methods often overlook the distinct010
characteristics of various components in 3D LiDAR models,011
where high variance in value distributions poses additional012
quantization challenge. To overcome these issues, we pro-013
pose Q-LiDAR, a novel quantization approach that incor-014
porates techniques, including SmoothQConv, fine-grained015
quantization for sparse operators, and Hessian-guided bit-016
width allocation. Our approach achieves W4A8 mixed-017
precision quantization on state-of-the-art 3D LiDAR mod-018
els while retaining XX% model accuracy, without requiring019
a calibration dataset or retraining.020

1. Introduction021

3D object detection with point clouds is a critical task in022
various applications such as autonomous driving, robotics,023
and augmented reality. These applications rely on accurate024
and efficient detection of objects in 3D space to navigate025
and interact with their environment safely and effectively.026
As they move toward real-time processing on edge devices,027
the demand for efficient models has grown even higher.028

Model quantization has proven to be an effective com-029
pression method. By compressing high bit-width floating-030
point (FP) data into lower bit-width integers, the computa-031
tional and memory costs of the model can be significantly032
reduced. Prior works have studied quantization methods033
for 2D object detection models and achieved promising re-034
sults [20, 22, 34]. However, directly applying these quan-035

tization methods to 3D point cloud object detection models 036
leads to sub-optimal accuracy [10]. Moreover, prior work 037
often relies on quantization-aware training (QAT) [10, 37], 038
which requires extensive fine-tuning, limiting its flexibility 039
for rapid deployment in resource-constrained environments. 040

Recently, LiDAR-PTQ introduces a post-training quan- 041
tization (PTQ) approach that reduces model size and com- 042
putational demands for 3D object detection models without 043
retraining [38]. While achieving promising results, LiDAR- 044
PTQ faces two main challenges: 045

• Calibration data bias: Despite eliminating the need for 046
retraining, LiDAR-PTQ relies on calibration data during 047
the quantization process. The quality of the quantization 048
can be negatively affected depending on the calibration 049
data provided. For example, if the calibration data is not 050
representative of the full dataset, the quantization might 051
not generalize well. 052

• Poor accuracy without calibration: Empirical results 053
show that quantizing LiDAR models for 3D object de- 054
tection with point cloud is challenging due to the complex 055
mix of diverse layers specifically designed for point cloud 056
processing. We observe high variance across four differ- 057
ent components in LiDAR models: (1) 2D/1D convolu- 058
tion (Conv2D/1D), (2) sparse convolution (SPConv3D), 059
(3) submanifold convolution (SubMConv3D), and (4) 060
multi-layer perceptron (MLP). The unique distributions 061
of activations and weights across these components re- 062
sult in significant variations, making it very challenging 063
to apply a uniform set of quantization parameters, such 064
as, W8A8, to values with high variance. 065

Based on our observations of the data distribution, we 066
draw ideas from the large language model (LLM) com- 067
pression literature, where training-free quantization meth- 068
ods have been shown to be effective [8, 27, 33]. To avoid 069
quantization errors from outliers in convolution operations, 070
we extend a smoothing-based quantization technique [33] to 071
transform the quantization difficulties in activations to con- 072
volution weights or vise versa. To compress SPConv3D and 073
SubMConv3D layers, we adopt channel-wise quantization. 074
However, when assigning proper bit-width for each compo- 075
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nent, we find that simple Mean Square Error with the un-076
compressed model is inadequate to distinguish quantization077
effects on various components. To overcome this, we pro-078
pose to leverage Hessian information to estimate the quan-079
tization sensitivity of each component and guide mixed-080
precision bit-width allocation across components.081

The contributions of the paper are four-fold:082

1. Comprehensive Component Analysis: We conduct an083
in-depth analysis of the data distribution across different084
components in 3D LiDAR object detection models. This085
investigation reveals the unique quantization challenges086
associated with the diverse layers in these models.087

2. Development of Calibration-Free Quantization088
Method: We propose a calibration-free quantization089
method, Q-LiDAR, that employs component-specific090
quantization strategies, including SmoothQConv091
for Conv2D/1D and MLP layers, and channel-wise092
quantization for sparse operators.093

3. Sensitivity-Based Mixed-Precision Quantization: To094
address the bit-width allocation challenges in vari-095
ous components, such as SPConv3D, SubMConv3D,096
Conv2/1d, and MLP layers, Q-LiDAR incorporates097
a sensitivity-based bit-width allocation policy based098
on Hessian information, tailored to each component’s099
unique characteristics to mitigate the accuracy loss.100

4. Extensive Experimental Validation: We validate the101
effectiveness of Q-LiDAR across a range of state-of-the-102
art LiDAR models for 3D object detection. Experimen-103
tal results demonstrate that Q-LiDAR achieves XX com-104
pression ratio while obtaining very comparable accuracy105
(XX%) as the uncompressed model including [Hongbo:106
will add the finalized models over here]. [Explicit accu-107
racy here]. We empirically select recent advances that108
have been adopted in many industries to construct a uni-109
fied baseline. The follow-up experiments show that we110
achieved [n%], [n%] and [n%] respectively on KITTI,111
nuScences and Waymo datasets as compared to direct112
quantization and achieve mAP and NDS of [n%], [n%]113
and [n%]. [Hongbo: evaluation results here]114

2. Related Work115

3D object detection. 3D object detection (3DOD) is a116
pivotal area of research for autonomous driving, robotics,117
and augmented reality. This process heavily relies on so-118
phisticated sensor technologies such as LiDAR (Light De-119
tection and Ranging), radar, and stereo vision cameras that120
capture detailed three-dimensional information about the121
environment. Among them, LiDAR has become one of the122
most widely used sensors for its real-time feedback and high123
accuracy, and since the data collected are separated points124
with different properties, they are also called point cloud.125

Several notable methods are introduced to capture pre-126

cise 3D spatial information, including PointNet [24] and 127
its variants PointNet++ [25] and PointNeXt [26], which di- 128
rectly process point clouds, and voxel-based methods like 129
VoxelNet [39], Voxel Transformer [21], and VoxelNeXt [4], 130
which convert point clouds into structured grids for easier 131
processing. 132

To efficiently manage sparse point cloud data, which is 133
inherently memory-intensive, prior work introduce custom 134
layers, such as SparseConv and SubMConv layers to han- 135
dle sparse point cloud data [5]. These layers leverages the 136
inherit sparsity of the input data by performing convolu- 137
tions exclusively on non-zero elements, which drastically 138
reduces both memory consumption and computational over- 139
head, making it particularly suitable for large-scale 3D data 140
processing. 141

Training-free quantization. While early model com- 142
pression techniques focus on improving model accuracy 143
through retraining or fine-tuning [6, 7, 15, 19, 23], they 144
face challenges in flexibility, which hinders the widespread 145
adoption of those methods across diverse deployment en- 146
vironments. Recent advancements in training-free com- 147
pression have significantly improved the efficiency and 148
deployment of vision transformers [13, 14, 17, 20, 36]. 149
In NLP, techniques such as GPTQ [9], AWQ [16], 150
SmoothQuant [33] have also demonstrated their success 151
in quantizing large language models. These advancement 152
highlight the ongoing efforts to compress DNN models. 153
While demonstrating promising results, few studies have 154
looked into training-free compression for 3D LiDAR object 155
detection models. 156

3. Methodology 157

In this section, we first introduce Q-LiDAR, a novel 158
training-free quantization method to compress 3D object 159
detectors while retaining accuracy. And then we develop 160
a Hessian-guided method for bit-width allocation to reduce 161
quantization errors. 162

Giving the hybrid architecture of 3D LiDAR mod- 163
els, we investigate the impact of quantization on specific 164
components within 3D object detection models, especially 165
six components commonly used in 3DOD models: Spar- 166
seConv3d, SubMConv3d, SparseConv2d, SubMConv2d, 167
Conv2d/1d, MLP. 168

3.1. Improving 3D LiDAR Model Compression via 169
SmoothQConv 170

We start by directly applying W8A8 post-training quan- 171
tization to 3D LiDAR models. However, we find that 172
W8A8 leads to large accuracy drop. Table 1 shows the 173
results of various combination of quantization bit-width 174
with both static and dynamic round-to-nearest (RTN) post- 175
training quantization over CenterPoint-Voxel [35] and the 176
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autonomous driving dataset NuScenes val. The quantiza-177
tion operation is formulated as:178

X INT = clamp
(⌊x

s

⌉
+ z, qmin, qmax

)
(1)179

where ⌊·⌉ is the rounding-to-nearest operator, s is the scal-180
ing factor, and z is the zero-point. As shown, while W8A8181
quantization has been considered quite robust to leads to182
traditional 2D convolution tasks [], it causes around 20183
mAP and NDS loss, which is quite significant. In contrast,184
W4A16 quantization leads to relatively lower accuracy loss.185

Table 1. Quantization Results with Performance Gaps

Method Bits(W/A) Metrics
mAP NDS

Full Prec. 32/32 59.22 66.48
Dynamic 8/8 39.56 (-19.66) 47.63 (-18.85)
Static 8/8 38.46 (-20.76) 46.13 (-20.35)
Dynamic 4/8 34.36 (-24.86) 44.87 (-21.61)
Static 4/8 33.80 (-25.42) 44.16 (-22.32)
Dynamic 4/16 51.24 (-7.98) 59.38 (-7.10)
Static 4/16 51.24 (-7.98) 59.38 (-7.10)
Dynamic 16/4 xx.xx (-7.98) xx.xx (-7.10)
Static 16/4 xx.xx (-7.98) xx.xx (-7.10)

To investigate why activation quantization leads to more186
significant accuracy drop, we further collect 1) the top-8187
maximum weight values; and 2) the average of the top-8188
activation values. As illustrated in Figure 1 and 2, the re-189
sults show that the activations, especially those convolution190
layers, contain outliers, whereas the weight values contain a191
much smaller dynamic range. Notably, the majority of out-192
liers are found in the activation values with the maximum193
value being up to 120, and the scaling of the activation is194
way greater than that of the weight(magnitude of 30 com-195
pared to 2). This confirms the imbalanced scaling and mag-196
nitude of the activation and weight value within the model.197

[Minjia: TODO: Add the figure that show the dynamic198
range results of weights and activations across layers here.199
I remember asking Banghao to collect these results before,200
so we should have them. Also, it would be better to show201
the results of conv2D, e.g., the one that correspond to the202
120.]203

To mitigate the errors introduced by extreme outliers204
and the imbalanced quantization difficulty between activa-205
tion and weight, a technique called SmoothQuant [33] can206
be implemented. SmoothQuant redistributes quantization207
complexity from one tensor to another (e.g., from activation208
to weight). This approach is especially effective to reduce209
outlier impact, particularly in the context of linear operators210
in large language models (LLMs), where outliers are often211
found in per-token areas. However, applying SmoothQuant212

(a) Activation distribution. (b) Weight distribution.

Figure 1. The left figure shows the dynamic range of activations
across different convolution layers. The right figure shows the dy-
namic range of weights across layers.

to 3D LiDAR models presents a unique challenge, as there 213
is no direct mathematical mechanism for shifting quanti- 214
zation complexity between activations and convolutional 215
weights. 216

To overcome this, we introduce SmoothQConv, an ex- 217
tension of SmoothQuant tailored to convolutional operators. 218
Our primary insight is that convolution can be reformulated 219
as a matrix multiplication by transforming the input data 220
through the im2col (image-to-column) operation [3]. The 221
im2col operation rearranges the input activation (feature 222
map) into a matrix where each column represents a local 223
region (receptive field) of the input that the convolutional 224
filter will slide over. This process effectively “unfolds” the 225
input data into a 2D matrix. allowing the convolution to be 226
treated as standard matrix multiplication. The resulting ma- 227
trix from the multiplication is then reshaped back (“fold”) 228
into the original spatial dimensions of the output feature 229
map. 230

Figure 2. Overview of SmoothQConv operation when α = 0.5.
“*” and × indicate convolution and matrix multiplication opera-
tions respectively.

The original General Matrix Matrix Multiplication 231
(GEMM) floating-point operation of Conv2d after unfold- 232
ing is: 233

Y = XFP32W FP32 (2) 234

where X ∈ Rbn×ihw and W ∈ Rihw×c. 235

To leverage INT8 GEMM acceleration on general hard- 236
ware, we implement weight-per-channel and activation-per- 237
tensor quantization. The output Y is approximated using 238
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Table 2. Notations

in channels i
out channels c
kernel height h
kernel width w
kernel depth d
batch size b
number of sliding n
number of active voxels v

quantized INT8 operands as:239

Y ≈ (X̂
INT8

⊙∆FP32
X )(Ŵ

INT8
diag(∆FP32

W )) (3)240

≈ diag(∆FP32
X )(X̂

INT8
Ŵ

INT8
)diag(∆FP32

W ) (4)241

where X̂
INT8

and Ŵ
INT8

are the quantized activation and242
weight matrices, and ∆X ∈ R and ∆W ∈ Rc denote243
the scaling factors for activation-per-tensor and weight-per-244
channel quantization respectively.245

The quantization of activations and weights is defined as:246

X̂
INT8

=

⌊
XFP32

∆FP32
X

⌉
Ŵ

INT8
=

⌊
W FP32

∆FP32
W

⌉
(5)247

where ⌊·⌉ denotes rounding to the nearest integer.248
The scaling factors are computed to map the floating-249

point values to the INT8 quantization range:250

∆X =
max(X fp32)−min(X fp32)

2b − 1
(6)251

and252

∆W ,j =

max
i=1,...,ihw

(W fp32
ij )− min

i=1,...,ihw
(W fp32

ij )

2b − 1
(7)253

To extend the SmoothQuant technique to convolution op-254
erators, we introduce a dedicated hyperparameter α, which255
controls the degree to which quantization difficulty is redis-256
tributed between tensors. The scaling value sk is calculated257
as:258

sk = max(|XFP32
k |)α/max(|W FP32

k |)1−α (8)259

Utilizing sk, we can transfer the quantization difficulty260
from one to the other by applying this scaling value to our261
activation and weight prior to the actual quantization stage.262
This yields the new quantized representations:263

X̂
INT8

=

⌊
XFP32

∆FP32
X

diag(sk)−1

⌉
(9)264

265

Ŵ
INT8

=

⌊
W FP32

∆FP32
W

diag(sk)

⌉
(10)266

The final matrix multiplication is then approximated us- 267
ing these quantized INT8 operands, X̂ from equation 9 and 268
Ŵ from equation 10, as per the approximation in equation 269
4. 270

As seen in Figure 1 and 2, the scaling of activation is way 271
greater than that of weight, meaning sk is mostly greater 272
than 1. Therefore, after scaling up the weight and scal- 273
ing down the activation, we manage to reduce the round- 274
ing error by reducing the value of max(|X|) in every ten- 275
sor. Hence, we successfully reduce the quantization error 276
and achieve more accurate results of the convolution opera- 277
tion even though the parameters of the convolution is INT8 278
quantized. 279

3.2. Fine-grained Quantization for Sparse Convo- 280
lutions 281

3D LiDAR models incorporate sparse operators, such as 282
submanifold convolution [12] and sparse convolution [18], 283
to reduce the computation load. Specifically, these oper- 284
ators selectively process only the active voxels, bypassing 285
non-active regions. Let xu represent an input feature vec- 286
tor of an active voxel located at 3-dimensional coordinates 287
u ∈ R3. The submanifold operator F0 by a kernel for Xu 288
is formulated as: 289

F0(W ,Xu) =
∑

i∈N(u)

W iXu+i (11) 290

where N(u) denotes the set of offsets in the 3-dimensional 291
cube centered at origin relative to u. Each offset is associ- 292
ated with a specific kernel weight parameterized by Wi. 293

Since the sparse operators perform convolution only in 294
active regions of the feature map, we adpot a channel- 295
wise quantization approach for both weights and activations 296
in SPConv and SubMConv layers. The weights of these 297
sparse convolutions, W ∈ Rc×i×h×w×d, extend Conv2d 298
weights with an additional depth dimension. To quan- 299
tize these weights, we first reshape W into a 2D matrix 300
W ∈ Rc×ihwd and apply channel-wise quantization along 301
the output channel dimension c. 302

Activations in sparse convolution layers, represented as 303
X ∈ Rv×3, where v is the number of active voxels in the 304
feature map and 3 indicates the coordinates (x, y, z) of each 305
active voxel, are similarly quantized. We apply channel- 306
wise quantization along each spatial axis (x, y, z) of the co- 307
ordinates to ensure independent quantization for each spa- 308
tial dimension. 309

3.3. Searching to Allocate Bit-Width/Hessian- 310
Guided Bit-width Allocation 311

[Hongbo: start fixing here] To consider layer sensitivity, we 312
choose to automatically search for an optimal bit-width al- 313
location policy that minimizes the output difference (e.g., 314
L1 loss) after the quantization for a certain layer. 315
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[Minjia: TODO: Depending on the Hessian results, we316
may consider the Hessian-guide bit-width allocation or the317
original sensitivity analysis based quantization. @Banghao,318
please share the Hessian results as soon as you get them.]319

Algorithm 1 Auto-Sensitive Analysis

Require: Pretrained FP model with N layers; Calibration
dataset Dc; Standard quantization module replacement
map Mq; XXX module replacement map Msq; Cali-
bration number T

Ensure: quantization method assigned to each type of
layer using corresponding map Mq or Msq.

1: Input T samples of Dc to FP network to get averaged
FP output of each layer Ofp;

2: for Li = {Li|i = 1, 2, ...N} do
3: Find quantized layer Lq

i with map Mq;
4: Replace the original layer within the model Li with

quantized layer Lq
i ;

5: end for
6: Input T samples of Dc to standard-quantized network

to get averaged standard-quantized output of each layer
Oqint;

7: for Li = {Li|i = 1, 2, ...N} do
8: Find quantized layer Lsq

i with map Msq;
9: Replace the original layer within the model Li with

quantized layer Lsq
i ;

10: end for
11: Input T samples of Dc to XXX network to get averaged

XXX output of each layer Osqint;
12: Check standard-quantized network output Oqint and FP

final output Ofp to calculate L1qint;
13: Check XXX network output Osqint and FP final output

Ofp to calculate L1sqint;
14: Check L1qint and L1sqint to get the list of layers that can

be quantized under XXX, with others being standard-
quantized;

4. Experiments320

We conduct experiments to evaluate the effectiveness of Q-321
LiDAR in terms of accuracy preserving and compression322
ratio. Our evaluation aims to answer the following ques-323
tions:324

• Can Q-LiDAR enable high compression ratio for 3D Li-325
DAR models without compromising accuracy?326

• Does Q-LiDAR effectively generalize across diverse327
model architectures?328

• How does Q-LiDAR compare to existing 3D LiDAR329
model compression methods in terms of the trade-off be-330
tween compression ratio and accuracy?331

4.1. Evaluation Methodology 332

Models Our experiments include both transformer-based 333
and convolution-based state-of-the-art 3D LiDAR mod- 334
els. The transformer-based models, DSVT-Voxel [32] 335
and TransFusion-L [1], feature a voxel transformer back- 336
bone, a 2D convolution backbone, and a dense convolu- 337
tional head. In contrast, the convolution-based models, PV- 338
RCNN++[30], PV-RCNN[28], Part-A2-Anchor [29], and 339
CenterPoint-Voxel [35], are equipped with a sparse 3D con- 340
volution backbone, a 2D convolution backbone, and a con- 341
volutional dense head. 342

Datasets We use Waymo Open Dataset (WOD) [31], 343
nuScenes [2], and KITTI [11] for evaluation. 344

Baselines We evaluate the performance of Q-LiDAR by 345
comparing it against two primary baselines: (1) the full- 346
precision model (FP32) to establish an upper-bound ref- 347
erence, and (2) the standard Max-min quantized model 348
(W8A8), commonly used in edge deployments. Since 349
LiDAR-PTQ does not have their code released, we skip it 350
for quantitative comparison. 351

4.2. Performance Comparison on Datasets 352

Waymo Dataset. To evaluate the performance of Q- 353
LiDAR, several experiements are performed with DSVT- 354
Voxel and PV-RCNN++ models on the Waymo dataset. 355

Table 3. Waymo Results for Different Detectors.

Models Methods Bits(W/A) Vehicle Pedestrian Cyclist

Full Prec. 32/32 x.x x.x
Max-min 8/8 x.x x.x

DSVT-Voxel QL-0.XX 8/8 x.x x.x
Max-min 4/8 x.x x.x
QL-X.XX 4/8 x.x x.x

Full Prec. 32/32 67.68 60.17 72.55
Max-min 8/8 x.x x.x

PV-RCNN++ QL-0.40 8/8 67.01 59.57 72.17
Max-min 4/8 x.x x.x
QL-0.xx 4/8 x.x x.x

nuScenes Dataset. To evaluate the performance of Q- 356
LiDAR, several experiements are performed with BEVFu- 357
sion and TransFusion-L models on the nuScenes dataset. 358

KITTI Dataset. To evaluate the performance of our 359
method, we conduct experiments on 2 models, PV-RCNN 360
and Part-A2, on KITTI dataset. 361

As shown in Table 5, achieves superior performance 362
compared to max-min quantization method. It manages to 363
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Table 4. nuScenes Results for Different Detectors.

Models Methods Bits(W/A) mAP NDS

Full Prec. 32/32 x.x x.x
Max-min 8/8 x.x x.x

TransFusion-L QL-X.XX 8/8 x.x x.x
Max-min 4/8 x.x x.x
QL-X.XX 4/8 x.x x.x

Full Prec. 32/32 59.22 66.48
Max-min 8/8 x.x x.x

CP-Voxel QL-0.80 8/8 59.16 66.40
Max-min 4/8 x.x x.x
QL-X.XX 4/8 x.x x.x

Table 5. KITTI Results for Different Detectors

Models Methods Bits(W/A) Car Pedestrian Cyclist

Full Prec. 32/32 83.69 54.84 68.92

Max-min 8/8 79.28 54.65 69.45
PV-RCNN QL-0.30 8/8 82.98 54.83 69.65

Max-min 4/8 78.01 56.54 62.88
QL-0.40 4/8 78.74 54.74 67.41

Full Prec. 32/32 79.40 60.11 69.92

Max-min 8/8 79.40 60.90 70.67
Part-A2-Anchor QL-0.40 8/8 79.41 60.28 69.95

Max-min 4/8 78.17 53.28 67.18
QL-0.35 4/8 79.25 55.05 68.77

minimize the accuracy loss within less than 1% for both364
W8A8 and W4A8.365

[Minjia: TODO: Add more in-depth description of the366
results. 1. Describe how to interpret the results in the table.367
2. Main observations. 3. Explanation of why we see these368
results.]369

4.3. Ablation Study370

We conducted an ablation study to evaluate the effects of371
the three key components of our framework, using the XXX372
model on the XXX dataset. As illustrated in Table 6, the ap-373
plication of channel-wise quantization to the 3D backbone374
network yielded a modest improvement in performance.375
Building on this, the introduction of SmoothQuant to the376
model’s 2D backbone resulted in a substantial performance377
leap from xx.x to xx.x. Finally, by employing the auto-378
sensitive-analysis algorithm (Algorithm 1) to identify and379
exclude layers particularly susceptible to quantization, we380
achieved a peak accuracy of xx.x.381

[Minjia: TODO: Suggested ablation studies: 1. Q-382
LiDAR, 2. Q-LiDAR- layer sensitivity, 3. Q-LiDAR- layer383
sensitivity - channelwise quantization for sparse ops, 4.384
Q-LiDAR- layer sensitivity - channelwise quantization for385

sparse ops - SmoothQConv.] 386

5. Conclusion 387

In this work, we introduce a training-free approach for effi- 388
cient and accurate 3D object detection. Our approach em- 389
ploys tailored optimizations against different components in 390
3D LiDAR models, including SmoothQConv, subchannel- 391
wise grouped quantization for SPConv and SubMConv. Ad- 392
ditionally, we introduce a Hessian-guided method for bit- 393
width allocation. Together, Q-LiDAR achieves state-of-the- 394
art compression ratio for LiDAR models over 3D object de- 395
tection. 396
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A. Appendix 590

You may include other additional sections here. 591

Table 7. nuScenes Results for Different Detectors

Models Methods Bits(W/A) mAP NDS Car Truck CV Bus Trailer Barrier Motor BC Ped TC

Full Prec. 32/32 59.22 66.48 84.86 57.38 16.85 70.75 38.10 68.29 58.99 42.06 85.08 69.84

CP-Voxel SQ-0.80 8/8 59.16 66.40 84.69 57.31 16.89 70.70 38.15 68.25 58.72 42.05 85.03 69.82
SQ-X.XX 4/8 x.x x.x x.x x.x x.x x.x x.x x.x x.x x.x x.x x.x

Table 8. KITTI Results for Different Detectors

Models Methods Bits(W/A) Car Pedestrian Cyclist

Full Prec. 32/32 78.62 52.97 67.14

Max-min 8/8 78.23 52.96 62.01
SECOND SQ-0.60 8/8 78.69 52.97 67.03

Max-min 4/8 69.41 42.81 52.99
SQ-0.65 4/8 78.29 54.72 64.03

Full Prec. 32/32 77.28 52.30 62.71

Max-min 8/8 74.68 50.83 60.44
PointPillar SQ-0.70 8/8 76.79 51.96 62.84

Max-min 4/8 63.74 44.15 55.50
SQ-0.35 4/8 75.11 49.79 60.02
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